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Abstract. The energy eigenvalues of harmonic oscillators in circular and spherical boxes 
are obtained through the Rayleigh-Schrodinger perturbative expansion, taking the free 
particle in a box as the non-perturbed system. The perturbative series is shown to be 
convergent for small boxes, and an upper bound for the radius of convergence is established. 
Pade-approximant solutions are also constructed for boxes of any size. Numerical 
comparison with the exact eigenvalues-which are obtained by constructing and diagonalis- 
ing the Hamiltonian in the basis of the eigenfunctions of the free particle in a box- 
corroborates the accuracy and range of validity of the approximate solutions, particularly 
the convergence and the radius of convergence of the perturbative series. 

1. Introduction 

The one-dimensional quantum mechanical problem of the harmonic and inverted 
oscillators in a box has been studied by several authors (Singh and Baijal 1955, Vawter 
1973, Consortini and Frieden 1976, Rotbart 1978, Fernandez and Castro 1981). 
Recently, Aguilera-Navarro er a1 (1980) investigated the problem with the objective 
of finding approximate analytical expressions for the energy eigenvalues as functions 
of size of the box. Specifically, they obtained (i) exact solutions by constructing and 
diagonalising the Hamiltonian matrix in the basis of eigenstates of the free particle 
in a box, (ii) Rayleigh-Schrodinger perturbative solutions (valid for small boxes) taking 
the quadratic potential as the perturbation, (iii) asymptotic solutions valid for very 
large boxes, and (iv) PadC-approximant solutions (valid for boxes of any size) construc- 
ted as interpolations between (ii) and (iii). The accuracy and range of validity of these 
solutions were illustrated through their numerical comparison. However, no attempt 
was made to establish the convergence and the radius of convergence of the Rayleigh- 
Schrodinger perturbation series. 

The present paper is an extension of Aguilera-Navarro er a1 (1980) in the sense 
that the same methods are used to study two- and three-dimensional harmonic 
oscillators in circular and spherical boxes, respectively. But, additionally, we show the 
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convergence of the Rayleigh-Schrodinger perturbative series and estimate an upper 
bound for the radius of convergence. In 9: 2, we formulate the exact solution of the 
problems in two alternative ways: the first one, in terms of confluent hypergeometric 
functions, is not the most convenient for the numerical evaluation of the energy 
eigenvalues, but it is useful to establish the asymptotic form of the solution. The 
second one uses the eigenstates of the free particle in circular and spherical boxes- 
Bessel functions and spherical Bessel functions, respectively-to construct the matrix 
of the corresponding Hamiltonians; the diagonalisation of these matrices provides 
highly accurate energy eigenvalues. In 9: 3, the appropriate matrix elements are used 
to construct the Rayleigh-Schrodinger perturbative expansions. We also use Rellich’s 
theorem to show the convergence of the Rayleigh-Schrodinger perturbative series for 
small boxes, and Kato’s method to establish upper bounds for the radii of convergence. 
In 9: 4, we construct PadC-approximant solutions which interpolate between the 
perturbative and asymptotic solutions previously obtained. In 8 5 ,  we present the 
numerical results of our exact and approximate solutions. Comparison of these results 
confirms the convergence of the Rayleigh-Schrodinger perturbative series for boxes 
of sizes consistent with the estimates of § 3, and shows that the PadC-approximant 
solutions are in fair agreement with the exact solutions for boxes of any size. 

2. Formulation of the exact solution 

The problem to be solved is the eigenvalue problem 

-- h2 (T+- d2 (D-1) --T) d L2 1/1 +$pu2r21/1 =E$,  
2p  dr r dr r 

with the additional boundary condition 

$ ( r  = R )  = 0,  (2) 
where R is the radius of the box. The bidimensional system is obtained by putting 
D = 2 and L2 = M 2 ,  while for the tridimensional system, D = 3 and L2 = I(I+ 1). Here, 
M = 0, 1 , 2 , .  . . and 1 = 0 ,1 ,2 , .  . . are the magnetic and orbital quantum numbers, 
respectively. 

Introducing the dimensionless variables .$ = r / b  and E = E/ho where b 2  = Zt/pu, 
we obtain from (1) 

The wavefunction can be written in the form 

$(t> =tu exp(-t2/2)f(t), (4) 
where a = JMJ or I ,  depending on the dimension of the problem we consider. 

Introducing (4) in (3) and changing to the variable z = t2, we find 

zp+( .+D/2-z) f ’+~(& -a -D/2 ) f=Oo  ( 5 )  
Equation ( 5 )  is Kummer’s equation and its solution is given by the confluent 

(6) 

hypergeometric function (Abramowitz and Stegun 1965), namely, 

f ( z )  = 1F1({a +D/2  -&}/2; a +D/2;  2). 
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Defining now 

~ = ( ~ - a - D / 2 ) / 2  or E = 277 +a +D/2,  (7) 

the boundary condition ( 2 )  reads 

lFl(-77;~1 + 0 / 2 ; ~ 0 ) = 0 ,  zo = (R /b )* .  ( 8 )  

Equation ( 8 )  is satisfied by discrete values of 77 which define the solutions of the 
problem. The eigenstates are characterised by the quantum numbers 11 and a with 
energy defined by (7). 

It should be noted that obtaining the energy eigenvalues through the zeros of the 
confluent hypergeometric function requires hard computational effort (see however 
Killingbeck 1983). We shall use (8) to obtain the asymptotic behaviour of the 
eigenvalues in the region of very large boxes as follows. 

The exact wavefunction, in the limit of very large boxes, can be written as 

lFl(-r/;  a + D / 2 ; z o )  - (-zO)"r(a + D / 2 ) / r ( a  +0/2+77)  
20-03  

r(a + 0 / 2 ) / r ( - q ) .  ( 9 )  + e~n(ZO)-q-a-D/Z 

For the jth level, 77 is expected to tend to j (positive integer). In such conditions, 
we obtain from ( 9 )  

/ r ( j + a  + 0 / 2 ) j ! ,  (10) 
2 i + u  +D/ 2 77 -j+e-'Oz0 

and the asymptotic energy eigenvalues are 

E , ~  - 2j + a + D / 2  + 2 e-20z~'+a+D/2 /r ( j+a + 0 / 2 ) j ! ,  ( 1  1 )  

withj=O, 1 , 2 , .  . . a n d a  =0,  1 , 2  , . . .  . 
Another way to obtain the exact numerical energy eigenvalues is by constructing 

and diagonalising the Hamiltonian matrix whose elements are constructed within the 
eigenspace of the free particle in a box. The matrix element for the bidimensional 
case is given by 

where Pun is the nth zero of the Bessel function of order a. 
For the tridimensional system the matrix element is given by 

(126)  
and Pun is the nth zero of the spherical Bessel function of order a. 

The computation was done for several values of to, and the eigenvalues are listed 
in table 1 .  The matrix dimension was varied in such a way as to assure the convergence 
of the eigenvalues within six decimal places. In the present case, we have diagonalised 
matrices of order 20 X 20 for values of 0 6 to s 1 and of order 50 x 50 to assure the 
convergence for 1 6 to 6 5.  
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Table l (a) .  Energy eigenvalues for the bidimensional case. M = 0, n = 1; M = 1, n = 1. 

Radius of convergence < 1.79. 
M = O , n = l .  

Perturbative P[1/5] P[4//31 P W 3 1  P W 4 1  Exact 

0.10 289.160 389 
0.30 32.138 623 
0.50 11.593619 
0.70 5.954 560 
0.90 3.657 848 
1.10 2.520 553 
1.30 1.892 186 
1.40 1.684 171 
1.50 1.523 104 
1.60 1.397 687 
1.70 1.299 694 
1.80 1.222 927 
1.90 1.162 541 
2.00 1.114586 
3.00 0.589 554 
4.00 -5.211 561 
5.00 -49.565 119 

M =  1, n = 1. 
0.10 734.099 745 
0.30 81.577 417 
0.50 29.394 249 
0.70 15.040 963 
0.90 9.160 909 
1.10 6.212 796 
1.30 4.546 352 
1.40 3.979 376 
1.50 3.529 870 
1.60 3.169 646 
1.70 2.878 443 
1.80 2.641 328 
1.90 2.447 027 
2.00 2.286 808 
3.00 1.398 583 
4.00 -2.380 372 
5.00 -30.372 028 

289.160 389 
32.138 623 
11.593 619 
5.954 558 
3.657 824 
2.520 400 
1.891 505 
1.682 878 
1.520 777 
1.393 678 
1.292 992 
1.211 858 
1.143 952 
1.081 050 
1.017 098 
1.001 569 
1.000 212 

734.099 745 
81.577 417 
29.394 249 
15.040 963 
9.160 901 
6.212 739 
4.546 072 
3.978 812 
3.528 795 
3.167 688 
2.875 010 
2.635 502 
2.437 392 
2.271 181 
2.604 335 
2.030 065 
2.004 086 

289.160 389 
32.138 623 
11.593 619 
5.954 560 
3.657 847 
2.520 544 
1.892 104 
1.683 938 
1.522 453 
1.395 838 
1.293 915 
1.197 376 
1.313 540 
1.166 304 
1.107 801 
1.214 547 
1.255 623 

734.099 745 
81.577 417 
29.394 249 
15.040 963 
9.160 909 
6.212 794 
4.546 330 
3.979 318 
3.529 725 
3.169 297 
2.817 624 
2.639 431 
2.442 602 
2.276 107 
1.814 189 
1.886 697 
2.014 144 

289.160 389 
32.138 623 
11.593 619 
5.954 561 
3.657 851 
2.520 580 
1.892 325 
1.684 460 
1.523 673 
1.398 760 
1.301 637 
1.226 320 
1.168 281 
1.124 019 
1.028 271 
1.053 443 
1.050 891 

734.099 745 
81.577 417 
29.394 249 
15.040964 
9.160 914 
6.212 829 
4.546 512 
3.979 696 
3.530 476 
3.170 744 
2.880 358 
2.644 554 
2.452 297 
2.295 187 
1.710 487 
1.724 971 
1.812 473 

289.160 389 
32.138 623 
11.593 622 
5.954 601 
3.658 140 
2.521 948 
1.897 166 
1.692 798 
1.537 297 
1.419907 
1.332 817 
1.269 930 
1.226 022 
1.196 274 
1.077 267 
1.022 744 
1.007 389 

734.099 745 
81.577 417 
29.394 251 
15.041 001 
9.161 188 
6.214 190 
4.551 662 
3.988 965 
3.546 444 
3.197 163 
2.922 416 
2.709 013 
2.547 327 
2.429 707 
2.200 469 
2.075 468 
2.026 617 

289.160 389 
32.138 623 
11.593 619 
5.954 561 
3.657 850 
2.520 572 
1.892 288 
1.684 386 
1.523 532 
1.398 506 
1.301 195 
1.225 586 
1.167 107 
1.122 209 
1.001 937 
1.000 003 
1.000 000 

734.100 199 
81.518 503 
29.405 600 
15.063 213 
9.197 690 
6.267 747 
4.623 134 
4.068 466 
3.632 219 
3.286 239 
3.010 316 
2.789 598 
2.612 934 
2.471 775 
2.014 967 
2.000 050 
2.000 000 

3. Rayleigh-Schrodinger perturbative solution 

Considering our unperturbed system as the free particle in a box and the quadratic 
potential as the perturbation, we construct the Rayleigh-Schrodinger perturbative 
series for the energy eigenvalues. 

The wavefunctions for the free particle in circular and spherical boxes satisfy the 
equation 

with D and L2 defined as in 9: 2, and K' = 2wE/h2. 
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Table l (b) .  Energy eigenvalues for the tridimensional case. I = 0, n = 1; 1 = 1, n = 1. 

Radius of convergence < 1.72. 
I = 0, n = 1. 

~ 

Perturbative P[1/5] P[4//31 P W I  P[2/41 Exact 

0.10 493.481 632 493.481 632 
0.30 54.843 855 54.843 855 
0.50 19.774 534 19.774 534 
0.70 10.140214 10.140 212 
0.90 6.206 533 6.206 512 
1.10 4.248 366 4.248 230 
1.30 3.156 107 3.155 486 
1.40 2.790 448 2.789 253 
1.50 2.504 645 2.502 471 
1.60 2.279 636 2.275 862 
1.70 2.101 654 2.095 351 
1.80 1.960471 1.950238 
1.90 1.848 260 1.831 894 
2.00 1.758 832 1.732 515 
3.00 1.153 178 1.544 195 
4.00 -4.341 728 1.504 181 
5.00 -48.076 319 1.500 581 

Radius of convergence < 1.840 - 
I =  1, n = 1. 
0.10 1009,528 302 
0.30 112.187 571 
0.50 40.428 277 
0.70 20.694 514 
0.90 12.614 909 
1.10 8.569 177 
1.30 6.288 103 
1.40 5.514 623 
1.50 4.903 392 
1.60 4.415 743 
1.70 4.023 929 
1.80 3.707 558 
1.90 3.451 299 
2.00 3.243 353 
3.00 2.310 416 
4.00 -1.565 579 
5.00 -34.035 847 

1009.538 302 
112.187 571 
40.428 276 
20.694 5 13 
12.614 895 

8.569 083 
6.287 660 
5.513 754 
4.901 782 
4.412 902 
4.019 125 
3.699 723 
3.438 898 
3.224 167 
2.688 286 
2.517 144 
2.502 500 

493.481 632 
54.843 855 
19.774 534 
10.140 214 
6.206 532 
4.248 351 
3.156015 
2.790 175 
2.503 818 
2.276 892 
2.088 423 
2.021 865 
1.873 944 
1.784 738 
1.610 758 
1.773 849 
1.870 927 

1009.538 302 
112.187 571 
40.428 277 
20.694 514 
12.614 908 

8.569 169 
6.288 006 
5.514 293 
4.902 059 
4.399 541 
4.032 462 
3.714 804 
3.459 915 
3.254 730 
2.615 770 
2.838 243 
3.078 434 

493.481 632 
54.843 855 
19.774 534 
10.140 214 

6.206 536 
4.248 387 
3.156 215 
2.790 674 
2.505 092 
2.280 483 
2.103 196 
1.963 182 
1.852 876 
1.766 469 
1.540 390 
1.593 339 
1.603 334 

1009.538 302 
112.187 571 
40.428 277 
20.694 515 
12.614 911 
8.569 189 
6.288 168 
5.514 758 
4.903 661 
4.416 255 
4.024 865 
3.709 212 
3.454 130 
3.248 064 
2.567 552 
2.663 861 
2.142 382 

493.481 632 
54.843 855 
19.774 537 
10.140 261 
6.206 874 
4.250 021 
3.162 149 
2.801 062 
2.522 384 
2.307 906 
2.144 637 
2.022 774 
1.934 239 
1.871 698 
1.641 254 
1.542 653 
1.514072 

1009.538 302 
112.187 571 
40.428 280 
20.694 559 
12.615 240 
8.570 818 
6.294 284 
5.525 703 
4.922 374 
4.446 914 
4.073 067 
3.781 909 
3.559 127 
3.392 893 
2.846 334 
2.611 653 
2.537 958 

493.481 632 
54.843 855 
19.774 534 
10.140 214 
6.206 535 
4.248 381 
3.156 185 
2.790 614 
2.504 976 
2.280 270 
2.102 820 
1.962 543 
1.851 831 
1.764 816 
1.506 082 
1.500015 
1.500 000 

1009.538 302 
112.187 571 

40.428 277 
20.694 5 15 
12.614 910 
8.569 186 
6.288 150 
5.514 722 
4.903 590 
4.416 123 
4.024 628 
3.708 801 
3.453 442 
3.246 947 
2.531 292 
2.500 144 
2.500 000 

The solutions of (13) must satisfy the boundary condition of (2). They are Bessel 
and spherical Bessel functions for the bidimensional and tridimensional cases, respec- 
tively, i.e. 

$Lo’ = AJM (Kr), $j0’ = ~ j l  ( K r ) .  (14a,b) 

The corresponding eigenvalues are given in terms of the zeros of the above solutions 
as 

EhO,‘ = h 2 p : , / 2 p R 2 .  (15)  
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The Rayleigh-Schrodinger perturbative series was computed up to the third order 
and it is expressed by 

k # n  

where L: = a-M’ for the bidimensional system and L: = -f(l+ 1) for the 
tridimensional one. 

The coefficients in the expansion (16) were computed with the help of Olver’s 
(1960) table of Bessel functions and the result can be written as 

In table 2 we present the coefficients a:;. 
One of the objects of this paper is to prove the convergence of the perturbative 

series in the region of small boxes. An intuitive argument was given by previous 
authors as follows. As the perturbation matrix elements are proportional to 6: and 
the unperturbed eigenvalues decrease with ti2, we can say that the perturbation is 
small when compared with the unperturbed Hamiltonian for values of to less than 1. 

We present a more rigorous argument based on Rellich’s theorem (Rellich 1969). 
This theorem states that if Hamiltonian can be written as a convergent power series 
in a certain parameter A ,  or particularly, 

H = Ho + A V, 

with V being a bounded operator, then the perturbed eigenvalues are analytic functions 
of A, and its power series are convergent in the neighbourhood of A = 0. 

Table 2(a). Coefficients for the perturbative series. Bidimensional case. E stands for 
powers of 10, in FORTRAN notation: E i n  = 10“”. 

(01 n a a a n  
11, 

a o n  on 

1 0 2.891 593E+0 1.090 283E - 1 -6.242 599E- 4 -4.367 609E - 6 
2 0 1.523 563E+ 1 1.557 274E- 1 1.834281E-4 -1.781 526E-5 
3 0 3.744 350E+ 1 1.622 155E- 1 8.794 544E-6 -5.530723E-7 
4 0 6.952 014E+ 1 1.642 593E - 1 6.123 589E-7 1.023 207E-7 
5 0 1.114 662E + 2 1.651 714E-1 8.544 759E- 8 7.537 347E-9 
1 1 7.340 985E + 0 1.212 595E- 1 -4.801 477E-4 -2.682 352E26 
2 1 2.460 923E+ 1 1.531 216E- 1 1.166 585E-4 -8.692 686E-6 
3 1 5.174 973E + 1 1.602 254E - 1 8.797921E-6 3.077 487E - 7 
4 1 8.876 038E + 1 1.629 112E- 1 7.284 405E- 7 2.880 339E- 8 
5 1 1.356 408E+2 1.642 092E - 1 1.145 709E-7 4.353 350E -9 
1 2 1.318731E+l 1.034 746E - 1 -3.511 470E-4 -1.234 053E-6 
2 2 3.544 250E + 1 1.431 428E- 1 5.532 250E-5 -4.615 381E-6 
3 2 6.751 035E+ 1 1.543 229E- 1 7.527 763E-6 1.563 355E-7 
4 2 1.094 601E + 2 1.590 535E- 1 6.981 589E-7 1.696901E-8 
5 2 1.6127768+2 1.614 996E - 1 1.194 422E-7 2.713 871E-9 
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Table 2(b). Coefficients for the perturbative series. Tridimensional case. E k n  = 10"'. 

1 0 4.934 802E + 0 1.413 364E-1 -5.577473E-4 -4.412 653E-6 
2 0 1.973 921E+ 1 1.603 341E- 1 1.558979E-4 -1.254672E-5 
3 0 4.441 322E+ 1 1.638 522E- 1 9.142044E-6 -5.170651E-7 
4 0 7.895 684E + 1 1.650 835E- 1 7.013 171E-7 8.479 062E - 8 
5 0 1.233 701E+2 1.656 535E- 1 1.045 044E-7 5.663 096E - 9 
1 1 1.009 536E+ 1 1.873 032E - 1 -4.104 872E-4 -3.349 338E-6 
2 1 2.983 976E + 1 1.736484E-1 8.231 949E-5 -7.045 474E-6 
3 1 5.944 993E + 1 1.701 710E- 1 8.197 784E - 6 2.149309E-7 
4 1 9.892 891E+ 1 1.687 726E- 1 7.221 382E-7 2.182452E-8 
5 1 1.482772E+2 1.680 717E- 1 1.188 506E-7 3.405 446E - 9 
1 2 1.660 873E + 1 2.193 498E- 1 -3.026825E-4 -2.351 412E-6 
2 2 4.135 962E+1 1.878 226E- 1 3.484773E-5 -4.441 162E-6 
3 2 7.592 744E+ 1 1.781 908E-1 6.868 104E - 6 1.114024E-7 
4 2 1.203 515E+2 1.739 370E - 1 6.653 644E - 7 1.327 369E-8 
5 2 1.746 400E + 2 1.716770E-1 1.177 130E-7 2.181 202E-9 

As our system is confined in the region 0 G r G R, the harmonic potential is bounded, 
and as a consequence of Rellich's theorem, the perturbative series obtained in 5 2 is 
convergent in the region of small boxes. 

As the convergence is assured, it is natural to look for the region in which the 
above statement is assured (Kato 1949, 1950). This region is estimated as follows. 

Consider the projector formally defined by 

1 
P,,(A)= --f (Ho+AV-Z)-'df, 

2.rrl C" 

where the circuit C,, involves only the unperturbed eigenvalue EL". Let it be, for 
instance, a circle of radius d/2 (where d is the distance between ELo' and its closest 
neighbour). 

The perturbed wavefunction is obtained as a power series of A,  by applying P,, ( A )  
over an unperturbed state. 

P, ( A )  can also be written as 

where R (0) is the unperturbed resolvent, namely 

R(0)  = ( H o 4 - l .  

In order to obtain a convergent power series for the perturbed wavefunction, as 
well as for its eigenvalues, the series (18) must be convergent. A sufficient condition 
which satisfies our requirements is 

and if V is a multiplicative operator, or 

Q$b = V(X)(b 



2950 V C Aguilera-Navarro et a1 

its norm is given by 

II  VI1 = sup1 V(X) l ,  O S X  S R .  

The upper limit for the convergence radius is obtained from expression (19), and 
for practical purposes it gives the result 

(Rib) < (2/d)”4. (20) 

4. Pade-approximant solutions 

The solutions in the two regions of small and very large boxes can be matched through 
the use of Pad6 approximants. First, we construct the two-point Pad6 approximants 
which reproduce the perturbative series (16) when to + 0, and the asymptotic eigen- 
values (1 1) when to -+ CO. Secondly, we present which we call one-point modified Pad6 
approximants which reproduce the perturbative series in the limit to+ 0; and in the 
region of CO + CO their behaviour is quite different from the previous ones. 

The two-point Pad6 approximants are constructed for the function F ( t O )  defined 
by 

F(50) = 502 (50) (21) 

which is an analytic function of the variable to. 
F ( t O )  presents the following behaviour: 

5c,-m 
~ ( 5 0 )  - (a  +2n +0/2)&, &-+O 4 F(50) - a 0 + a 150 + U 25: + a 3 &I2 + O(5F 1, 

where the coefficients ai  are the ones obtained for the perturbative series (see table 
2).  

From this behaviour, we can construct two-point Pad6 approximants for F([o) ,  

n =0 m = l  

in the following way. The asymptotic form of F(&) when to -, CO requires M = N - 1 
and the additional relation 

C N / b N - I =  a 2n f 0 1 2 .  

We have performed the computation for N = 4 and the resulting Pad6 approximant, 
for the ground state of the tridimensional system, is 

4.934 802 - 1.397 1825; +0.102 2946; -0.045 5295; -0.001 6765: 
1 - 0.283 1285: - 0.007 9126; -0.001 11736; 

P[4ii3] = 

and the energy eigenvalues are found by using (21). 
The one-point modified Pad6 approximants are constructed for the function 

which presents the behaviour 
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The additional condition is that the degree of the numerator must be less than the 

The one-point Pad6 approximants, constructed for the ground state of the 
degree of the denominator. 

tridimensional system, are 
4.934 802 - 0.987 2145; 

1 +0.103 9126; +0.002 945.540 -0.002 081.5; -0.000 6045; +O.OOO 112.5: 
P[1/5] = 

P[2/3] = 

P[2/4] = 

4.934 802 - 1.201 8945: + 0.082 6825: 
1 +0.060 409.5: + 0.006 476.540 + 0,000 2385; 

4.934 802 - 1.895 7335; + 0.259 8745: 
1 - 0.080 192.5: - 0.000 355.540 + 0.002 189.5; + 0,000 7895; 

and the energy eigenvalues are found by using (22). 

5. Numerical results and discussion 

We present in table 1 our numerical results for some of the lowest eigenvalues of the 
two systems. In the first column we list the size of the boxes. In the last column we 
list the exact eigenvalues obtained by diagonalising the Hamiltonian matrix. The 
order of the matrices we have diagonalised was such that the convergence of the 
eigenvalues was assured up to six decimal places. For 0 s to s 1 we have diagonalised 
matrices of order 20 x 20 while for 1 s to s 5 the convergence was assured with matrices 
of order 50 x 50. The second column exhibits the perturbative eigenvalues which 
were computed with the help of (16). As can be seen, the perturbative series is 
convergent in the region estimated by (20). 

We also present the eigenvalues computed by Pade-approximant technique. From 
these results we can conclude that the Pad6 approximants allow us to obtain explicit 
expressions for the energy eigenvalues valid for all sizes of boxes. 

The reader should be warned that some Pad6 approximants present inherent 
singularities. For instance P[4/13], whose expression was given above, presents a 
singularity for to- 1.75. 

Nevertheless the energies for the neighbouring values to- 1.70 and 1.80 are quite 
reasonable. 

We should also point out that for tO25, the energy eigenvalues have already 
converged to their asymptotic values. Other states of both systems show a similar trend. 
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