On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 162943
(http://iopscience.iop.org/0305-4470/16/13/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:28

Please note that terms and conditions apply.

On the radius of convergence of Rayleigh-Schrödinger perturbative solutions for quantum oscillators in circular and spherical boxes ${ }^{\dagger}$

V C Aguilera-Navarro \ddagger, J F Gomes $\ddagger \|$, A H Zimerman \ddagger and E Ley Koosq
\ddagger Instituto de Física Teórica, São Paulo, Brasil
§ Instituto de Física, Universidad Nacional Autónoma de México, México, DF

Received 10 November 1982, in final form 2 March 1983

Abstract

The energy eigenvalues of harmonic oscillators in circular and spherical boxes are obtained through the Rayleigh-Schrödinger perturbative expansion, taking the free particle in a box as the non-perturbed system. The perturbative series is shown to be convergent for small boxes, and an upper bound for the radius of convergence is established. Padé-approximant solutions are also constructed for boxes of any size. Numerical comparison with the exact eigenvalues-which are obtained by constructing and diagonalising the Hamiltonian in the basis of the eigenfunctions of the free particle in a boxcorroborates the accuracy and range of validity of the approximate solutions, particularly the convergence and the radius of convergence of the perturbative series.

1. Introduction

The one-dimensional quantum mechanical problem of the harmonic and inverted oscillators in a box has been studied by several authors (Singh and Baijal 1955, Vawter 1973, Consortini and Frieden 1976, Rotbart 1978, Fernandez and Castro 1981). Recently, Aguilera-Navarro et al (1980) investigated the problem with the objective of finding approximate analytical expressions for the energy eigenvalues as functions of size of the box. Specifically, they obtained (i) exact solutions by constructing and diagonalising the Hamiltonian matrix in the basis of eigenstates of the free particle in a box, (ii) Rayleigh-Schrödinger perturbative solutions (valid for small boxes) taking the quadratic potential as the perturbation, (iii) asymptotic solutions valid for very large boxes, and (iv) Padé-approximant solutions (valid for boxes of any size) constructed as interpolations between (ii) and (iii). The accuracy and range of validity of these solutions were illustrated through their numerical comparison. However, no attempt was made to establish the convergence and the radius of convergence of the RayleighSchrödinger perturbation series.

The present paper is an extension of Aguilera-Navarro et al (1980) in the sense that the same methods are used to study two- and three-dimensional harmonic oscillators in circular and spherical boxes, respectively. But, additionally, we show the

[^0]convergence of the Rayleigh-Schrödinger perturbative series and estimate an upper bound for the radius of convergence. In § 2 , we formulate the exact solution of the problems in two alternative ways: the first one, in terms of confluent hypergeometric functions, is not the most convenient for the numerical evaluation of the energy eigenvalues, but it is useful to establish the asymptotic form of the solution. The second one uses the eigenstates of the free particle in circular and spherical boxesBessel functions and spherical Bessel functions, respectively-to construct the matrix of the corresponding Hamiltonians; the diagonalisation of these matrices provides highly accurate energy eigenvalues. In § 3, the appropriate matrix elements are used to construct the Rayleigh-Schrödinger perturbative expansions. We also use Rellich's theorem to show the convergence of the Rayleigh-Schrödinger perturbative series for small boxes, and Kato's method to establish upper bounds for the radii of convergence. In § 4, we construct Padé-approximant solutions which interpolate between the perturbative and asymptotic solutions previously obtained. In $\S 5$, we present the numerical results of our exact and approximate solutions. Comparison of these results confirms the convergence of the Rayleigh-Schrödinger perturbative series for boxes of sizes consistent with the estimates of § 3, and shows that the Padé-approximant solutions are in fair agreement with the exact solutions for boxes of any size.

2. Formulation of the exact solution

The problem to be solved is the eigenvalue problem

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 \mu}\left(\frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{(D-1)}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{L^{2}}{r^{2}}\right) \psi+\frac{1}{2} \mu \omega^{2} r^{2} \psi=E \psi \tag{1}
\end{equation*}
$$

with the additional boundary condition

$$
\begin{equation*}
\psi(r=R)=0 \tag{2}
\end{equation*}
$$

where R is the radius of the box. The bidimensional system is obtained by putting $D=2$ and $L^{2}=M^{2}$, while for the tridimensional system, $D=3$ and $L^{2}=l(l+1)$. Here, $M=0,1,2, \ldots$ and $l=0,1,2, \ldots$ are the magnetic and orbital quantum numbers, respectively.

Introducing the dimensionless variables $\xi=r / b$ and $\varepsilon=E / \hbar \omega$ where $b^{2}=\hbar / \mu \omega$, we obtain from (1)

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} \xi^{2}}+\frac{(D-1)}{\xi} \frac{\mathrm{d}}{\mathrm{~d} \xi}-\frac{L^{2}}{\xi^{2}}-\xi^{2}+2 \varepsilon\right) \psi(\xi)=0 . \tag{3}
\end{equation*}
$$

The wavefunction can be written in the form

$$
\begin{equation*}
\psi(\xi)=\xi^{\alpha} \exp \left(-\xi^{2} / 2\right) f(\xi) \tag{4}
\end{equation*}
$$

where $\alpha=|M|$ or l, depending on the dimension of the problem we consider.
Introducing (4) in (3) and changing to the variable $z=\xi^{2}$, we find

$$
\begin{equation*}
z f^{\prime \prime}+(\alpha+D / 2-z) f^{\prime}+\frac{1}{2}(\varepsilon-\alpha-D / 2) f=0 \tag{5}
\end{equation*}
$$

Equation (5) is Kummer's equation and its solution is given by the confluent hypergeometric function (Abramowitz and Stegun 1965), namely,

$$
\begin{equation*}
f(z)={ }_{1} F_{1}(\{\alpha+D / 2-\varepsilon\} / 2 ; \alpha+D / 2 ; z) . \tag{6}
\end{equation*}
$$

Defining now

$$
\begin{equation*}
\eta=(\varepsilon-\alpha-D / 2) / 2 \quad \text { or } \quad \varepsilon=2 \eta+\alpha+D / 2 \tag{7}
\end{equation*}
$$

the boundary condition (2) reads

$$
\begin{equation*}
{ }_{1} F_{1}\left(-\eta ; \alpha+D / 2 ; z_{0}\right)=0, \quad z_{0}=(R / b)^{2} \tag{8}
\end{equation*}
$$

Equation (8) is satisfied by discrete values of η which define the solutions of the problem. The eigenstates are characterised by the quantum numbers η and α with energy defined by (7).

It should be noted that obtaining the energy eigenvalues through the zeros of the confluent hypergeometric function requires hard computational effort (see however Killingbeck 1983). We shall use (8) to obtain the asymptotic behaviour of the eigenvalues in the region of very large boxes as follows.

The exact wavefunction, in the limit of very large boxes, can be written as

$$
\begin{gather*}
{ }_{1} F_{1}\left(-\eta ; \alpha+D / 2 ; z_{0}\right) \xrightarrow[z_{0} \rightarrow \infty]{ }\left(-z_{0}\right)^{\eta} \Gamma(\alpha+D / 2) / \Gamma(\alpha+D / 2+\eta) \\
+\mathrm{e}^{z_{0}}\left(z_{0}\right)^{-\eta-\alpha-D / 2} \Gamma(\alpha+D / 2) / \Gamma(-\eta) \tag{9}
\end{gather*}
$$

For the j th level, η is expected to tend to j (positive integer). In such conditions, we obtain from (9)

$$
\begin{equation*}
\eta \sim j+\mathrm{e}^{-z_{0}} z_{0}^{2 j+\alpha+D / 2} / \Gamma(j+\alpha+D / 2) j! \tag{10}
\end{equation*}
$$

and the asymptotic energy eigenvalues are

$$
\begin{equation*}
\varepsilon_{\alpha j} \sim 2 j+\alpha+D / 2+2 \mathrm{e}^{-z_{0}} z_{0}^{2 j+\alpha+D / 2} / \Gamma(j+\alpha+D / 2) j! \tag{11}
\end{equation*}
$$

with $j=0,1,2, \ldots$ and $\alpha=0,1,2, \ldots$.
Another way to obtain the exact numerical energy eigenvalues is by constructing and diagonalising the Hamiltonian matrix whose elements are constructed within the eigenspace of the free particle in a box. The matrix element for the bidimensional case is given by
$\langle n| H|m\rangle=\left[\frac{1}{2} \frac{\beta_{\alpha n}^{2}}{\xi_{0}^{2}}+\frac{\xi_{0}^{2}}{6}\left(1-\frac{2\left(1-m^{2}\right)}{\beta_{\alpha n}^{2}}\right)\right] \delta_{n m}+\left(1-\delta_{n m}\right) 4 \xi_{0}^{2} \beta_{\alpha n} \beta_{\alpha m}\left(\beta_{\alpha n}^{2}-\beta_{\alpha m}^{2}\right)^{-2}$
where $\beta_{\alpha n}$ is the nth zero of the Bessel function of order α.
For the tridimensional system the matrix element is given by

$$
\begin{equation*}
\langle n| H|m\rangle=\left[\frac{1}{2} \frac{\beta_{\alpha n}^{2}}{\xi_{0}^{2}}+\frac{\xi_{0}^{2}}{6}\left(1-\frac{3-4 l(l+1)}{2 \beta_{\alpha n}^{2}}\right)\right] \delta_{n m}+\left(1-\delta_{n m}\right) 4 \xi_{0}^{2} \beta_{\alpha n} \beta_{\alpha m}\left(\beta_{\alpha n}^{2}-\beta_{\alpha m}^{2}\right)^{-2} \tag{12b}
\end{equation*}
$$

and $\beta_{\alpha n}$ is the nth zero of the spherical Bessel function of order α.
The computation was done for several values of ξ_{0}, and the eigenvalues are listed in table 1. The matrix dimension was varied in such a way as to assure the convergence of the eigenvalues within six decimal places. In the present case, we have diagonalised matrices of order 20×20 for values of $0 \leqslant \xi_{0} \leqslant 1$ and of order 50×50 to assure the convergence for $1 \leqslant \xi_{0} \leqslant 5$.

Table 1(a). Energy eigenvalues for the bidimensional case. $M=0, n=1 ; M=1, n=1$.
Radius of convergence <1.79.
$M=0, n=1$.

	Perturbative	$P[1 / 5]$	$P[4 / 3]$	$P[2 / 3]$	$P[2 / 4]$	Exact
0.10	289.160389	289.160389	289.160389	289.160389	289.160389	289.160389
0.30	32.138623	32.138623	32.138623	32.138623	32.138623	32.138623
0.50	11.593619	11.593619	11.593619	11.593619	11.593622	11.593619
0.70	5.954560	5.954558	5.954560	5.954561	5.954601	5.954561
0.90	3.657848	3.657824	3.657847	3.657851	3.658140	3.657850
1.10	2.520553	2.520400	2.520544	2.520580	2.521948	2.520572
1.30	1.892186	1.891505	1.892104	1.892325	1.897166	1.892288
1.40	1.684171	1.682878	1.683938	1.684460	1.692798	1.684386
1.50	1.523104	1.520777	1.522453	1.523673	1.537297	1.523532
1.60	1.397687	1.393678	1.395838	1.398760	1.419907	1.398506
1.70	1.299694	1.292992	1.293915	1.301637	1.332817	1.301195
1.80	1.222927	1.211858	1.197376	1.226320	1.269930	1.225586
1.90	1.162541	1.143952	1.313540	1.168281	1.226022	1.167107
2.00	1.114586	1.081050	1.166304	1.124019	1.196274	1.122209
3.00	0.589554	1.017098	1.107801	1.028271	1.077267	1.001937
4.00	-5.211561	1.001569	1.214547	1.053443	1.022744	1.000003
5.00	-49.565 119	1.000212	1.255623	1.050891	1.007389	1.000000
$M=1, n=1$.						
0.10	734.099745	734.099745	734.099745	734.099745	734.099745	734.100199
0.30	81.577417	81.577417	81.577417	81.577417	81.577417	81.518503
0.50	29.394249	29.394249	29.394249	29.394249	29.394251	29.405600
0.70	15.040963	15.040963	15.040963	15.040964	15.041001	15.063213
0.90	9.160909	9.160901	9.160909	9.160914	9.161188	9.197690
1.10	6.212796	6.212739	6.212794	6.212829	6.214190	6.267747
1.30	4.546352	4.546072	4.546330	4.546512	4.551662	4.623134
1.40	3.979376	3.978812	3.979318	3.979696	3.988965	4.068466
1.50	3.529870	3.528795	3.529725	3.530476	3.546444	3.632219
1.60	3.169646	3.167688	3.169297	3.170744	3.197163	3.286239
1.70	2.878443	2.875010	2.877624	2.880358	2.922416	3.010316
1.80	2.641328	2.635502	2.639431	2.644554	2.709013	2.789598
1.90	2.447027	2.437392	2.442602	2.452297	2.547327	2.612934
2.00	2.286808	2.271181	2.276107	2.295187	2.429707	2.471775
3.00	1.398583	2.604335	1.814189	1.710487	2.200469	2.014967
4.00	-2.380 372	2.030065	1.886697	1.724971	2.075468	2.000050
5.00	-30.372028	2.004086	2.014144	1.812473	2.026617	2.000000

3. Rayleigh-Schrödinger perturbative solution

Considering our unperturbed system as the free particle in a box and the quadratic potential as the perturbation, we construct the Rayleigh-Schrödinger perturbative series for the energy eigenvalues.

The wavefunctions for the free particle in circular and spherical boxes satisfy the equation

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{D-1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{L^{2}}{r^{2}}+\kappa^{2}\right) \psi^{(0)}=0, \tag{13}
\end{equation*}
$$

with D and L^{2} defined as in $\S 2$, and $\kappa^{2}=2 \mu E / \hbar^{2}$.

Table 1(b). Energy eigenvalues for the tridimensional case. $l=0, n=1 ; l=1, n=1$.
Radius of convergence <1.72.
$l=0, n=1$.

	Perturbative	$P[1 / 5]$	$P[4 / 3]$	$P[2 / 3]$	$P[2 / 4]$	Exact
0.10	493.481632	493.481632	493.481632	493.481632	493.481632	493.481632
0.30	54.843855	54.843855	54.843855	54.843855	54.843855	54.843855
0.50	19.774534	19.774534	19.774534	19.774534	19.774537	19.774534
0.70	10.140214	10.140212	10.140214	10.140214	10.140261	10.140214
0.90	6.206533	6.206512	6.206532	6.206536	6.206874	6.206535
1.10	4.248366	4.248230	4.248357	4.248387	4.250021	4.248381
1.30	3.156107	3.155486	3.156015	3.156215	3.162149	3.156185
1.40	2.790448	2.789253	2.790175	2.790674	2.801062	2.790614
1.50	2.504645	2.502471	2.503818	2.505092	2.522384	2.504976
1.60	2.279636	2.275862	2.276892	2.280483	2.307906	2.280270
1.70	2.101654	2.095351	2.088423	2.103196	2.144637	2.102820
1.80	1.960471	1.950238	2.021865	1.963182	2.022774	1.962543
1.90	1.848260	1.831894	1.873944	1.852876	1.934239	1.851831
2.00	1.758832	1.732515	1.784738	1.766469	1.871698	1.764816
3.00	1.153178	1.544195	1.610758	1.540390	1.641254	1.506082
4.00	-4.341728	1.504181	1.773849	1.593339	1.542653	1.500015
5.00	-48.076 319	1.500581	1.870927	1.603334	1.514072	1.500000

Radius of convergence <1.840
$l=1, n=1$.

0.10	1009.528302	1009.538302	1009.538302	1009.538302	1009.538302	1009.538302
0.30	112.187571	112.187571	112.187571	112.187571	112.187571	112.187571
0.50	40.428277	40.428276	40.428277	40.428277	40.428280	40.428277
0.70	20.694514	20.694513	20.694514	20.694515	20.694559	20.694515
0.90	12.614909	12.614895	12.614908	12.614911	12.615240	12.614910
1.10	8.569177	8.569083	8.569169	8.569189	8.570818	8.569186
1.30	6.288103	6.287660	6.288006	6.288168	6.294284	6.288150
1.40	5.514623	5.513754	5.514293	5.514758	5.525703	5.514722
1.50	4.903392	4.901782	4.902059	4.903661	4.922374	4.903590
1.60	4.415743	4.412902	4.399541	4.416255	4.446914	4.416123
1.70	4.023929	4.019125	4.032462	4.024865	4.073067	4.024628
1.80	3.707558	3.699723	3.714804	3.709212	3.781909	3.708801
1.90	3.451299	3.438898	3.459915	3.454130	3.559127	3.453442
2.00	3.243353	3.224167	3.254730	3.248064	3.392893	3.246947
3.00	2.310416	2.688286	2.615770	2.567552	2.846334	2.531292
4.00	-1.565579	2.517144	2.838243	2.663861	2.611653	2.500144
5.00	-34.035847	2.502500	3.078434	2.742382	2.537958	2.500000

The solutions of (13) must satisfy the boundary condition of (2). They are Bessel and spherical Bessel functions for the bidimensional and tridimensional cases, respectively, i.e.

$$
\psi_{\mathrm{b}}^{(0)}=A J_{M}(\kappa r), \quad \psi_{\mathrm{t}}^{(0)}=B j_{l}(\kappa r) .
$$

$(14 a, b)$
The corresponding eigenvalues are given in terms of the zeros of the above solutions as

$$
\begin{equation*}
E_{\alpha n}^{(0)}=\hbar^{2} \beta_{\alpha n}^{2} / 2 \mu R^{2} . \tag{15}
\end{equation*}
$$

The Rayleigh-Schrödinger perturbative series was computed up to the third order and it is expressed by

$$
\begin{align*}
\varepsilon_{\alpha n}=\frac{\beta_{\alpha n}^{2}}{2 \xi_{0}^{2}}+\frac{\xi_{0}^{2}}{6} & \left(1-\frac{3+4 L_{D}^{2}}{2 \beta_{\alpha n}^{2}}\right)+32 \xi_{0}^{6} \sum_{k \neq n} \frac{\beta_{\alpha n}^{2} \beta_{\alpha k}^{2}}{\left(\beta_{\alpha n}^{2}-\beta_{\alpha k}^{2}\right)^{5}} \\
& +256 \xi_{0}^{10} \sum_{\substack{i \neq n \\
k \neq n}} \frac{\left.\beta_{\alpha k}^{2}-\beta_{\alpha n}^{2}\right)^{3}\left(\beta_{\alpha j}^{2}-\beta_{\alpha n}^{2}\right)^{2}\left(\beta_{\alpha k}^{2}-\beta_{\alpha j}^{2}\right)^{2}}{\left(\beta^{2}\right.} \\
& -32 \xi_{0}^{10}\left(1-\frac{3+4 L_{D}^{2}}{2 \beta_{\alpha n}^{2}}\right) \sum_{k \neq n} \frac{\beta_{\alpha n}^{2} \beta_{\alpha k}^{2}}{\left(\beta_{\alpha n}^{2}-\beta_{\alpha k}^{2}\right)^{6}}+\mathrm{O}\left(\xi_{0}^{14}\right), \tag{16}
\end{align*}
$$

where $L_{2}^{2}=\frac{1}{4}-M^{2}$ for the bidimensional system and $L_{3}^{2}=-l(l+1)$ for the tridimensional one.

The coefficients in the expansion (16) were computed with the help of Olver's (1960) table of Bessel functions and the result can be written as

$$
\varepsilon_{\alpha n}=a_{\alpha n}^{(0)} \xi_{0}^{-2}+a_{\alpha n}^{(1)} \xi_{0}^{2}+a_{\alpha n}^{(2)} \xi_{0}^{6}+a_{\alpha n}^{(3)} \xi_{0}^{10}
$$

In table 2 we present the coefficients $a_{\alpha n}^{(i)}$.
One of the objects of this paper is to prove the convergence of the perturbative series in the region of small boxes. An intuitive argument was given by previous authors as follows. As the perturbation matrix elements are proportional to ξ_{0}^{2} and the unperturbed eigenvalues decrease with ξ_{0}^{-2}, we can say that the perturbation is small when compared with the unperturbed Hamiltonian for values of ξ_{0} less than 1.

We present a more rigorous argument based on Rellich's theorem (Rellich 1969). This theorem states that if Hamiltonian can be written as a convergent power series in a certain parameter λ, or particularly,

$$
H=H_{0}+\lambda V,
$$

with V being a bounded operator, then the perturbed eigenvalues are analytic functions of λ, and its power series are convergent in the neighbourhood of $\lambda=0$.

Table 2(a). Coefficients for the perturbative series. Bidimensional case. E stands for powers of 10, in FORTRAN notation: $E \pm n=10^{ \pm n}$.

n	α	$a_{\alpha n}^{(0)}$	$a_{\alpha n}^{(1)}$	$a_{\alpha n}^{(2)}$	$a_{\alpha n}^{(3)}$
1	0	$2.891593 \mathrm{E}+0$	$1.090283 \mathrm{E}-1$	$-6.242599 \mathrm{E}-4$	$-4.367609 \mathrm{E}-6$
2	0	$1.523563 \mathrm{E}+1$	$1.557274 \mathrm{E}-1$	$1.834281 \mathrm{E}-4$	$-1.781526 \mathrm{E}-5$
3	0	$3.744350 \mathrm{E}+1$	$1.622155 \mathrm{E}-1$	$8.794544 \mathrm{E}-6$	$-5.530723 \mathrm{E}-7$
4	0	$6.952014 \mathrm{E}+1$	$1.642593 \mathrm{E}-1$	$6.123589 \mathrm{E}-7$	$1.023207 \mathrm{E}-7$
5	0	$1.114662 \mathrm{E}+2$	$1.651714 \mathrm{E}-1$	$8.544759 \mathrm{E}-8$	$7.537347 \mathrm{E}-9$
1	1	$7.340985 \mathrm{E}+0$	$1.212595 \mathrm{E}-1$	$-4.801477 \mathrm{E}-4$	$-2.682352 \mathrm{E}-6$
2	1	$2.460923 \mathrm{E}+1$	$1.531216 \mathrm{E}-1$	$1.166585 \mathrm{E}-4$	$-8.692686 \mathrm{E}-6$
3	1	$5.174973 \mathrm{E}+1$	$1.602254 \mathrm{E}-1$	$8.797921 \mathrm{E}-6$	$3.077487 \mathrm{E}-7$
4	1	$8.876038 \mathrm{E}+1$	$1.629112 \mathrm{E}-1$	$7.284405 \mathrm{E}-7$	$2.880339 \mathrm{E}-8$
5	1	$1.356408 \mathrm{E}+2$	$1.642092 \mathrm{E}-1$	$1.145709 \mathrm{E}-7$	$4.353350 \mathrm{E}-9$
1	2	$1.318731 \mathrm{E}+1$	$1.034746 \mathrm{E}-1$	$-3.511470 \mathrm{E}-4$	$-1.234053 \mathrm{E}-6$
2	2	$3.544250 \mathrm{E}+1$	$1.431428 \mathrm{E}-1$	$5.532250 \mathrm{E}-5$	$-4.615381 \mathrm{E}-6$
3	2	$6.751035 \mathrm{E}+1$	$1.543229 \mathrm{E}-1$	$7.527763 \mathrm{E}-6$	$1.563355 \mathrm{E}-7$
4	2	$1.094601 \mathrm{E}+2$	$1.590535 \mathrm{E}-1$	$6.981589 \mathrm{E}-7$	$1.696901 \mathrm{E}-8$
5	2	$1.612776 \mathrm{E}+2$	$1.614996 \mathrm{E}-1$	$1.194422 \mathrm{E}-7$	$2.713871 \mathrm{E}-9$

Table 2(b). Coefficients for the perturbative series. Tridimensional case. $E \pm n=10^{ \pm n}$.

n	α	$a_{\alpha n}^{(0)}$	$a_{\alpha n}^{(1)}$	$a_{\alpha n}^{(2)}$	$a_{\alpha n}^{(3)}$
1	0	$4.934802 \mathrm{E}+0$	$1.413364 \mathrm{E}-1$	$-5.577473 \mathrm{E}-4$	$-4.412653 \mathrm{E}-6$
2	0	$1.973921 \mathrm{E}+1$	$1.603341 \mathrm{E}-1$	$1.558979 \mathrm{E}-4$	$-1.254672 \mathrm{E}-5$
3	0	$4.441322 \mathrm{E}+1$	$1.638522 \mathrm{E}-1$	$9.142044 \mathrm{E}-6$	$-5.170651 \mathrm{E}-7$
4	0	$7.895684 \mathrm{E}+1$	$1.650835 \mathrm{E}-1$	$7.013171 \mathrm{E}-7$	$8.479062 \mathrm{E}-8$
5	0	$1.233701 \mathrm{E}+2$	$1.656535 \mathrm{E}-1$	$1.045044 \mathrm{E}-7$	$5.663096 \mathrm{E}-9$
1	1	$1.009536 \mathrm{E}+1$	$1.873032 \mathrm{E}-1$	$-4.104872 \mathrm{E}-4$	$-3.349338 \mathrm{E}-6$
2	1	$2.983976 \mathrm{E}+1$	$1.736484 \mathrm{E}-1$	$8.231949 \mathrm{E}-5$	$-7.045474 \mathrm{E}-6$
3	1	$5.944993 \mathrm{E}+1$	$1.701710 \mathrm{E}-1$	$8.197784 \mathrm{E}-6$	$2.149309 \mathrm{E}-7$
4	1	$9.892891 \mathrm{E}+1$	$1.687726 \mathrm{E}-1$	$7.221382 \mathrm{E}-7$	$2.182452 \mathrm{E}-8$
5	1	$1.482772 \mathrm{E}+2$	$1.680717 \mathrm{E}-1$	$1.188506 \mathrm{E}-7$	$3.405446 \mathrm{E}-9$
1	2	$1.660873 \mathrm{E}+1$	$2.193498 \mathrm{E}-1$	$-3.026825 \mathrm{E}-4$	$-2.351412 \mathrm{E}-6$
2	2	$4.135962 \mathrm{E}+1$	$1.878226 \mathrm{E}-1$	$3.484773 \mathrm{E}-5$	$-4.441162 \mathrm{E}-6$
3	2	$7.592744 \mathrm{E}+1$	$1.781908 \mathrm{E}-1$	$6.868104 \mathrm{E}-6$	$1.114024 \mathrm{E}-7$
4	2	$1.203515 \mathrm{E}+2$	$1.739370 \mathrm{E}-1$	$6.653644 \mathrm{E}-7$	$1.327369 \mathrm{E}-8$
5	2	$1.746400 \mathrm{E}+2$	$1.716770 \mathrm{E}-1$	$1.177130 \mathrm{E}-7$	$2.181202 \mathrm{E}-9$

As our system is confined in the region $0 \leqslant r \leqslant R$, the harmonic potential is bounded, and as a consequence of Rellich's theorem, the perturbative series obtained in $\S 2$ is convergent in the region of small boxes.

As the convergence is assured, it is natural to look for the region in which the above statement is assured (Kato 1949, 1950). This region is estimated as follows.

Consider the projector formally defined by

$$
\begin{equation*}
P_{n}(\lambda)=-\frac{1}{2 \pi \mathrm{i}} \oint_{C_{n}}\left(H_{0}+\lambda V-l\right)^{-1} \mathrm{~d} l, \tag{17}
\end{equation*}
$$

where the circuit C_{n} involves only the unperturbed eigenvalue $E_{n}^{(0)}$. Let it be, for instance, a circle of radius $d / 2$ (where d is the distance between $E_{n}^{(0)}$ and its closest neighbour).

The perturbed wavefunction is obtained as a power series of λ, by applying $P_{n}(\lambda)$ over an unperturbed state.
$P_{n}(\lambda)$ can also be written as

$$
\begin{equation*}
P_{n}(\lambda)=-\frac{1}{2 \pi \mathrm{i}} \oint_{C_{n}} R(0) \sum_{k=0}^{\infty}(-\lambda)^{k}[V R(0)]^{k} \mathrm{~d} l \tag{18}
\end{equation*}
$$

where $R(0)$ is the unperturbed resolvent, namely

$$
\boldsymbol{R}(0)=\left(H_{0}-l\right)^{-1}
$$

In order to obtain a convergent power series for the perturbed wavefunction, as well as for its eigenvalues, the series (18) must be convergent. A sufficient condition which satisfies our requirements is

$$
\begin{equation*}
|\lambda| \cdot\|V\| /(d / 2)<1 \tag{19}
\end{equation*}
$$

and if V is a multiplicative operator, or

$$
\hat{V} \psi=V(x) \psi
$$

its norm is given by

$$
\|V\|=\sup |V(x)|, \quad 0 \leqslant x \leqslant R
$$

The upper limit for the convergence radius is obtained from expression (19), and for practical purposes it gives the result

$$
\begin{equation*}
(R / b)<(2 / d)^{1 / 4} . \tag{20}
\end{equation*}
$$

4. Padé-approximant solutions

The solutions in the two regions of small and very large boxes can be matched through the use of Pade approximants. First, we construct the two-point Padé approximants which reproduce the perturbative series (16) when $\xi_{0} \rightarrow 0$, and the asymptotic eigenvalues (11) when $\xi_{0} \rightarrow \infty$. Secondly, we present which we call one-point modified Padé approximants which reproduce the perturbative series in the limit $\xi_{0} \rightarrow 0$; and in the region of $\xi_{0} \rightarrow \infty$ their behaviour is quite different from the previous ones.

The two-point Padé approximants are constructed for the function $F\left(\xi_{0}\right)$ defined by

$$
\begin{equation*}
F\left(\xi_{0}\right)=\xi_{0}^{2} \varepsilon\left(\xi_{0}\right) \tag{21}
\end{equation*}
$$

which is an analytic function of the variable ξ_{0}.
$F\left(\xi_{0}\right)$ presents the following behaviour:
$F\left(\xi_{0}\right) \xrightarrow{\xi_{0} \rightarrow 0} a_{0}+a_{1} \xi_{0}^{4}+a_{2} \xi_{0}^{8}+a_{3} \xi_{0}^{12}+\mathrm{O}\left(\xi_{0}^{16}\right), \quad F\left(\xi_{0}\right) \xrightarrow{\xi_{0} \rightarrow \infty}(\alpha+2 n+D / 2) \xi_{0}^{2}$, where the coefficients a_{i} are the ones obtained for the perturbative series (see table $2)$.

From this behaviour, we can construct two-point Padé approximants for $F\left(\xi_{0}\right)$,

$$
P[N \| M]=\left(\sum_{n=0}^{N} c_{n} \xi_{0}^{2 n}\right)\left(1+\sum_{m=1}^{M} b_{m} \xi_{0}^{2 m}\right)^{-1}
$$

in the following way. The asymptotic form of $F\left(\xi_{0}\right)$ when $\xi_{0} \rightarrow \infty$ requires $M=N-1$ and the additional relation

$$
c_{N} / b_{N-1}=\alpha+2 n+D / 2
$$

We have performed the computation for $N=4$ and the resulting Padé approximant, for the ground state of the tridimensional system, is
$P[4 / / 3]=\frac{4.934802-1.397182 \xi_{0}^{2}+0.102294 \xi_{0}^{4}-0.045529 \xi_{0}^{6}-0.001676 \xi_{0}^{8}}{1-0.283128 \xi_{0}^{2}-0.007912 \xi_{0}^{4}-0.0011173 \xi_{0}^{6}}$
and the energy eigenvalues are found by using (21).
The one-point modified Padé approximants are constructed for the function

$$
G\left(\xi_{0}\right)=\left[\varepsilon\left(\xi_{0}\right)-\alpha-2 n-D / 2\right] \xi_{0}^{2}
$$

which presents the behaviour

$$
G\left(\xi_{0}\right) \xrightarrow{\xi_{0} \rightarrow 0} a_{0}-(\alpha+2 n+D / 2) \xi_{0}^{2}+a_{1} \xi_{0}^{4}+a_{2} \xi_{0}^{8}+a_{3} \xi_{0}^{12}, \quad G\left(\xi_{0}\right) \xrightarrow{\xi_{0} \rightarrow \infty} 0 .
$$

The additional condition is that the degree of the numerator must be less than the degree of the denominator.

The one-point Pade approximants, constructed for the ground state of the tridimensional system, are

$$
\begin{aligned}
& P[1 / 5]=\frac{4.934802-0.987214 \xi_{0}^{2}}{1+0.103912 \xi_{0}^{2}+0.002945 \xi_{0}^{4}-0.002081 \xi_{0}^{6}-0.000604 \xi_{0}^{8}+0.000112 \xi_{0}^{10}} \\
& P[2 / 3]=\frac{4.934802-1.201894 \xi_{0}^{2}+0.082682 \xi_{0}^{4}}{1+0.060409 \xi_{0}^{2}+0.006476 \xi_{0}^{4}+0.000238 \xi_{0}^{6}} \\
& P[2 / 4]=\frac{4.934802-1.895733 \xi_{0}^{2}+0.259874 \xi_{0}^{4}}{1-0.080192 \xi_{0}^{2}-0.000355 \xi_{0}^{4}+0.002189 \xi_{0}^{6}+0.000789 \xi_{0}^{8}}
\end{aligned}
$$

and the energy eigenvalues are found by using (22).

5. Numerical results and discussion

We present in table 1 our numerical results for some of the lowest eigenvalues of the two systems. In the first column we list the size of the boxes. In the last column we list the exact eigenvalues obtained by diagonalising the Hamiltonian matrix. The order of the matrices we have diagonalised was such that the convergence of the eigenvalues was assured up to six decimal places. For $0 \leqslant \xi_{0} \leqslant 1$ we have diagonalised matrices of order 20×20 while for $1 \leqslant \xi_{0} \leqslant 5$ the convergence was assured with matrices of order 50×50. The second column exhibits the perturbative eigenvalues which were computed with the help of (16). As can be seen, the perturbative series is convergent in the region estimated by (20).

We also present the eigenvalues computed by Padé-approximant technique. From these results we can conclude that the Padé approximants allow us to obtain explicit expressions for the energy eigenvalues valid for all sizes of boxes.

The reader should be warned that some Padé approximants present inherent singularities. For instance $P[4 / 3]$, whose expression was given above, presents a singularity for $\xi_{0} \sim 1.75$.

Nevertheless the energies for the neighbouring values $\xi_{0} \sim 1.70$ and 1.80 are quite reasonable.

We should also point out that for $\xi_{0} \geqslant 5$, the energy eigenvalues have already converged to their asymptotic values. Other states of both systems show a similar trend.

Acknowledgments

One of us (JFG) gratefully acknowledges Drs J F Perez and B M Pimentel for useful discussions about Rellich's theorem. He is also grateful to FAPESP for a postgraduate grant.

References

Baker Jr G A 1975 Essentials of Padé Approximants (New York: Academic)
Consortini A and Frieden B R 1976 Nuovo Cimento 35153
Fernandez F M and Castro E A 1981 J. Math. Phys. 221669
Kato T 1949 Prog. Theor. Phys. 4514

- 1950 Prog. Theor. Phys. 595

Killingbeck J P 1983 Microcomputer Quantum Mechanics (Bristol: Adam Hilger)
Olver F W J 1960 Bessel Function-Zeros and Associated Values, Royal Society Mathematical Tables Vol 7
Rellich F 1969 Perturbation Theory of Eigenvalue Problems (New York: Gordon and Breach)
Rotbart F C 1978 J. Phys. A: Math. Gen. 112363
Singh K K and Baijal J S 1955 Prog. Theor. Phys. 4214
Vawter R 1973 J. Math. Phys. 141864

[^0]: † Supported partially by FINEP (Brasil) under contract 43/82/0150/00.
 || With a fellowship of FAPESP (Brasil).
 T Work partially supported by Instituto Nacional de Investigaciones Nucleares (México).

